mattise

nicholas w. mattise | mechanical option

senior

thesis final presentation | april 15, 2014

penn state | ae 482

thesis

mattise senior thesis

advisor Dr. Laura Miller

nicholas w. mattise | mechanical option

201 Rouse The Navy Yard Philadelphia PA, 19112

thesis final presentation | april 15, 2014

about 201 rouse location building statistics existing systems performance

thesis proposal

mechanical depth

electrical breadth

conclusion

nicholas w. mattise | mechanical option

thesis final presentation | april 15, 2014

about 201 rouse location building statistics existing systems performance

thesis proposal

mechanical depth

electrical breadth

conclusion

nicholas w. mattise | mechanical option

84,500 square feet

4 stories

high end office space

Franklin Square Capital Partners

September 2013 to Q1 2015

\$19.4 million

about 201 rouse location building statistics existing systems performance

thesis proposal

mechanical depth

electrical breadth

conclusion

nicholas w. mattise | mechanical option

architecture

zinc clad exterior facade

glass walled ground floor pedestal

floor to ceiling windows

premium materials

solar shading fins

about 201 rouse location building statistics existing systems performance

thesis proposal

mechanical depth

electrical breadth

conclusion

nicholas w. mattise | mechanical option

mechanical system

dual 125 ton packaged AHUs

67,200 CFM | 24% min OA

DX coil cooling | electric heating

two vertical risers for supply & return

4 sizes of VAV with reheat terminals

separate HVAC for restrooms and core

thesis final presentation | april 15, 2014

Airflow (M Packaged Unit [SCF		lax/Min) M]	Cooling Capacity (MBH)	Heating Capacity (MBH)	Unit Specified		
1&2 33,600/		8,230	1501.5	748.5	McQuay RPS130D		
3		1,600,	/165	48.6	65.5	McQuay MHSH04B	
Unit	Prim Inlet Dia. (in)		Prima	ry Air (Max/Min) (CFM)	Electric Reheat Coil Capacity (BTU/hr)		
А	6		420/210		10239		
В	8			800/400	20478		
С	10			1400/700 34		34310	
D		12		1800/900	42663		

about 201 rouse location building statistics existing systems performance

thesis proposal

mechanical depth

electrical breadth

conclusion

nicholas w. mattise | mechanical option

building loads

electrical plug density - 0.75 W/ft²

lighting intensity - 1.0 W/ft^2

task lighting - 0.75 W/ft^2

equipment density - 0.229 W/ft²

HVAC - 0.709 W/ft^2

thesis final presentation | april 15, 2014

design conditions

indoor cooling - 75°F heating - 70°F 54% relative humidity

outdoor summer - 90.6°F dry bulb summer - 74.3 °F wet bulb winter - 16.9°F

about 201 rouse location building statistics existing systems performance

thesis proposal

mechanical depth

electrical breadth

conclusion

nicholas w. mattise | mechanical option

all electric equipment | uniform demand rate

building performance

envelope driven performance

HVAC is 36% of annual electricity usage

\$181,191 yearly utility cost

31% EUI performance gain

thesis final presentation | april 15, 2014

about 201 rouse location building statistics existing systems performance

thesis proposal

mechanical depth

electrical breadth

conclusion

nicholas w. mattise | mechanical option

all electric equipment | uniform demand rate

building performance

envelope driven performance

HVAC is 36% of annual electricity usage

\$181,191 yearly utility cost

31% EUI performance gain

- Space Heat Hot Water Vent. Fans
- Ext. Usage
- Misc. Equip.
- Task Lights
- Area Lights
- Other

about 201 rouse location building statistics existing systems performance

thesis proposal

mechanical depth

electrical breadth

conclusion

nicholas w. mattise | mechanical option

all electric equipment | uniform demand rate

building performance

envelope driven performance

HVAC is 36% of annual electricity usage

\$181,191 yearly utility cost

31% EUI performance gain

thesis final presentation | april 15, 2014

about 201 rouse location building statistics existing systems performance

thesis proposal

mechanical depth

electrical breadth

conclusion

nicholas w. mattise | mechanical option

ŀ

all electric equipment | uniform demand rate

building performance

envelope driven performance

HVAC is 36% of annual electricity usage

\$181,191 yearly utility cost

31% EUI performance gain

thesis final presentation | april 15, 2014

Building	Site EUI (kBtu/sqft)	Source EUI (kBtu/sqft)	Performance Gain
201 Rouse	46.4	139.2	31% Site 6% Source
CBECS National Average	67.3	148.1	_

nicholas w. mattise | mechanical option

mechanical depth

geothermal heat pumps active chilled beams dedicated outdoor air

goals

testbed of geothermal application lower annual energy use increase LEED rating

thesis final presentation | april 15, 2014

structural breadth

analyze roof structural support

electrical breadth

electrical equipment and wires for new HVAC equipment

thesis proposal

mechanical depth

selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

standing column well

open loop

closed loop

thesis final presentation | april 15, 2014

thesis proposal

mechanical depth

selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

ground coupled heat pump

constant thermal properties

reduced pump energy

lowest level of maintenance

maintains usable site space

expensive

thesis final presentation | april 15, 2014

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

site characteristics

bedrock mix of sand and gravel

conductivity of 1.6 Btu/hr*ft*°F

constant ground temperature of 55°F

long term thermal performance with diffusivity and Potomac-Raritan-Magothy aquifer penetration

thesis final presentation | april 15, 2014

retaceous rocks, which are present in small areas of southern Montgomery County, cannot be shown at the scale of this map. repared by Bureau of Topographic and Geologic Survey. Third Edition, 1990; Fourth Printing, Slightly Revised, 2007.

U OF TOPOGRAPHIC AND GEOLOGIC SURVI

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

Ingersoll and Zobel Bore Length Equations

Short Circuit Heat Loss Factor, Fsc Part Load Factor, PFLm Net annual heat transfer to ground, Qa Building Design Block Load Cooling, Qlc Building Design Block Load Heating, Qlh Effective thermal resistance of ground annual puls Effective thermal resistance of ground daily pulse Effective thermal resistance of ground monthly puls Effective thermal resistance of bore, Rb Undisturbed ground Temperature, tg Temp penalty for interference of adjacent bores Liquid temp at HP inlet, twi Liquid temp at HP outlet, two System power input at design cooling load, V System power input at design heating load, W

Required Length

well sizing

bedrock mix of sand and gravel

conductivity of 1.6 Btu/hr*ft*^oF

constant ground temperature of 55°F

long term thermal performance with diffusivity and Potomac-Raritan-Magothy aquifer penetration

thesis final presentation | april 15, 2014

	Cooling	Heating	Units
	1.04	1.04	-
	1.00	1.00	-
	700,000	700,000	btu/hr
	3,000,000	-	btu/hr
	-	2,300,000	btu/hr
e, Rga	0.24	0.24	ft*hr* ⁰ F / Btu
e, Rgd	0.13	0.13	ft*hr* ⁰ F / Btu
se, Rgm	0.21	0.21	ft*hr* ⁰ F / Btu
	0.10	0.10	ft*hr* ⁰ F / Btu
	55.00	55.00	٥F
s, tp	2.00	2.00	٥F
	75.00	35.00	٥F
	85.90	30.00	٥F
lc	100,000	-	W
/h	-	100,000	W
	48,617	50,096	ft

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

grid of 8x16 wells

128 wells

400 foot well depth

20 ft well spacing

surface area of 51,200 ft²

reverse return piping setup

underneath 201 rouse parking lot

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

well layout

6" header pipe

2" row header pipe

1" thermally fused HDPE well piping

6" bore diameter

thermally conductive fill material

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

well field pump

3 GPM/ton design flow

750 GPM pipe requirement

96 feet head loss

25 bhp pump operating at 2,700 RPM

thesis final presentation | april 15, 2014

Section	Pipe Size (in)	Head Loss
Header	6.00	18.75
Bore Loop	2.00	21.51
Well	1.00	23.47
Sub Total	-	63.73
Multiplier		1.50
Total		95.59

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

heat pump

20 ton water to water units

iterative design between delta T of heat pump and well requirements

13 total units

laid out on roof

247 tons cooling | 342 ft²/ton cooling

2,352 Mbtu heating | 431 ft²/ton heating

thesis final presentation | april 15, 2014

heating

Source			Loa	d						
EWT (deg	F) (GP	w Hea M) Los	ad EW ⁻ ss	T Source LWT	e HC (MBtuh)	Power (kW)	HA (MBtuh)	LWT	СОР	Head Loss
35	50) 9.9	9 110) 30.3	180.9	18.9	116.4	117.2	2.8	7.4
coolir	cooling									
Source			Load							
EWT (°F)	Flow (GPM)	Head Loss	EWT	Source LWT (°F)	ТС (МВН)	Power (kW)	HR (MBH)	LWT (°F)	EER	Head Loss
75	50	6.75	57	85.9	228.8	12.52	271.55	50.85	18.35	8.4
penn state ae 482										

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

dedicated outdoor air system (DOAS)

handles air ventilation requirement and space latent loads

delivers conditioned "cold" air directly to the active chilled beams

increases indoor air quality (IAQ)

60% relative humidity for spaces

downsizes air flow requirements for space conditioning

reduces duct size

thesis final presentation | april 15, 2014

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

dedicated outdoor air system (DOAS)

WNW

SE (d

To

sized based upon ACBs and peak wet bulb

12,500 CFM

73 tons cooling | chilled water from GCHP

hot water sensible heating

ace	# of Typical	Latent Load
(office)	4	7.45 kBtu/hr
office)	4	11.4 kBtu/hr
tal	8	75,400 Btu/hr

thesis final presentation | april 15, 2014

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

active chilled beams (ACB)

active chilled beams are effective at cooling large spaces at low primary airflow rates

coupled with a "cold" primary air DOAS unit saves on required ACB capacity

required airflow for ACB must be sufficient to maintain latent load of space to avoid condensate

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

	a
I	
	re
Selected ACB	V
8 ft DID632 Z	
NOZZIE	50 CFM

active chilled beams (ACB)

selected Trox 8ft active chilled beam

covers an area of 300 ft²

equires 60 per floor to condition space

• — —						_
						_
		🛃		•		c
<u> </u>	· · · · · · · · · · · · · · · · · · ·	9 · · 9	· · 🛛 · ·	· 🛛 · · ·	9 • • 9 •	F

V	Qcw	Qh	GPM	Head Loss
CFM	4,305 Btu/hr	7,803 Btu/hr	1	5.8 ft H20
the	sis final pres	sentation april 1	.5, 2014	

Space	# ACBs	Airflow	Sensible Cooling	Heating	GPM
SE	26	1,300 CFM	112.3 kBtu/hr	202 kBtu/hr	26
WNW	34	1,700 CFM	146 kBtu/hr	265 kBtu/hr	34
Total	60	2,950 CFM	258.3 kBtu/hr	467 kBtu/hr	60

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

with the complexity of the designed system modeling was a hurdle

accurate modeling of advanced HVAC systems is limited by the components that different modeling programs support

many solutions do not offer all three components or they are not fully realized

energy modeling complexities

ended up using eQUEST

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

water to air heat pumps based upon water to water HP capacity

packaged fan unit based upon DOAS unit fan CFM and energy performance

yields an energy model representative of the designed system's energy use

geothermal model

ground source vertical well system

thesis final presentation | april 15, 2014

powered induction unit model

- uses powered induction units
- packaged fan unit sized to the DOAS unit
- but induction units are supplied HW and CHW by boiler and cooling tower respectively
 - creates a representative model of building thermal performance

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

monthly performance

Electricity Consumption-DOAS/Ground Loop/ACBs

thesis final presentation | april 15, 2014

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

16.000

12,000

monthly utility cost

Redesigned 201 Rouse Monthly Utility Bills

thesis final presentation | april 15, 2014

Pumps & Aux.

saves 270,000 kWh

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

Building201 Rouse Initial201 Rouse Thesis
Revised

Difference

cost comparison

Mechanical Systems Cost	Total Building Cost	Mechanical %
\$1,513,000	\$19,402,000	7.80%
\$2,193,132	\$20,082,132	10.92%
-	\$680,132	3.12%

thesis final presentation | april 15, 2014

new HVAC system cost

Component	Unit Cost	Unit	Units	Cost
Heat Pumps	\$41,387	each	13	\$538,031
Geothermal Wells and Headers	\$16	per foot	51200	\$819,200
DOAS	\$209,958	each	1	\$209,958
Ducts	\$12.82	linear foot	2800	\$35,896.00
Return Grills	\$30.02	each	120	\$3,602.40
Building Side Pumps	\$10,163	each	2	\$20,326
Well Field Pumps	\$21,050	each	2	\$42,100
Core HVAC Unit	\$14.90	sqft	5312	\$79,148.80
Active Chilled Beams	\$1,404	each	240	\$336,960
Piping	\$16.35	linear foot	6600	\$107,910.00
Total				\$2,193,132

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

payback period

saves on average **\$3,600** a month in utility bills

187 months | 15.5 years

using uniform electricity charge of \$0.162 per kWh

thesis final presentation | april 15, 2014

EUI comparison

Building	Site EUI (kBtu/sqft)	Source EUI (kBtu/sqft)	Performance Gain Over Benchmark	Performance Gain over Initial
201 Rouse Initial	46.4	139.2	31% Site, 6% Source	-
201 Rouse Redesigned	35.2	105.6	48% Over Site, 28% Source	24% Site, 24% Source
CBECS National Average	67.3	148.1	-	-

thesis proposal

mechanical depth selection geothermal calculations well layout equipment dedicated outdoor air system active chilled beams performance

electrical breadth

conclusion

nicholas w. mattise | mechanical option

initial LEED certification standing

seeking LEED new construction certification

as of October 2013 the building only qualified for 54 of the 110 LEED points

owner's goal was gold

silver is 50-59

gold threshold is 60

thesis final presentation | april 15, 2014

revised LEED certification standing

- the geothermal system reaffirmed 3 points for "green power"
 - the DOAS added 1 LEED point for indoor air quality
- the whole building energy reduction yield an additional 10 points

electrical utility via PECO and local microgrid

existing electrical system

- 600 amp high voltage connection
- 4000 amp main distribution board (mdb)
- ~1650 FLA of existing and future HVAC equipment

thesis final presentation | april 15, 2014

removed electrical loads

Equipment	Quantity	Full Load Amps	MCA	Volts	Phase	KW
Rooftop Air Handling Unit	2	369.2	400	460	3	294.2
VAV-A	8	10.83032491	15	277	1	3
VAV-B	8	21.66064982	25	277	1	6
VAV-C	8	36.10108303	40	277	1	10
VAV-D	8	45.12635379	50	277	1	12.5
Total		1648.147292	1840			840.4

~1650 full load amps removed from mdb

Equipment	Quantity
Well Field Pump	2
Heat Pump	13
Hot/Chilled Water Pump	4
DOAS Unit	1
Panelboard HVH1	1

new electrical wiring

7	Amps	Wire Type	Wires	Wire Size	Ground Size	Conduit
	23.3	THHW	3 Current 1 Neutral 1 Ground	10 AWG	14 AWG	1" EMT
	22.73	THHW	3 Current 1 Neutral 1 Ground	10 AWG	14 AWG	(3) 1 1/2" EMT
	4.04	THHW	1 Current 1 Neutral 1 Ground	14 AWG	14 AWG	1" EMT
	37.8	THHW	3 Current 1 Neutral 1 Ground	8 AWG	12 AWG	3/4" EMT
	350	THHW	3 Current 1 Neutral 1 Ground	(2) 2/0 AWG	4 AWG	2" EMT

thesis final presentation | april 15, 2014

new electrical loads

Equipment	Quantity	Full Load Amps	MCA	Voltage	Phase	KW
Well Field Pump	2	23.3	30	460	1	18.6
Heat Pump	13	33.4	40	460	3	18.9
Hot/Chilled Water Pump	4	4.04	15	230	1	1.12
DOAS Unit	1	37.8	50	460	3	37.8

~540 full load amps added to mdb

owner choice between electrical panel savings or additional future capacity

thesis final presentation | april 15, 2014

electrical breadth

removal of 1,100 full load amps from main distribution

no change in panel quantity

circuit location optimized to equipment

reduction in wiring costs

new panelboard

FOR: COMMON HVAC AND PUMPS PHASE: 3 PH-4W LOCATION: MAIN ELECTRICAL ROOM MAIN: 225 AULO AC: 25,000 A MOUNTING: SURFACE DESCRIPTION LTG. VA EQUIP. VA HVAC VA BREAKER AMPS BUS SREAKER MOUNTING: SURFACE #EF-1 EXHAUST FAN 3,980 15 1 A 2 25 5.010 #CH-LO LINT HEATER #FTU-8 TERMINAL UNIT 10,180 20 9 B 10 15 1,120 #TTU-AS FAN TERMINAL UNIT #HTU-B TERMINAL UNIT 10,180 20 9 B 10 15 1,120 CHWP 1 11 C 12 20 3,000 #TTU-AS FAN TERMINAL UNIT #TU-AS FAN TERMINAL SPARE #UH-A2 UNIT HEATER 5,000 15 13 A 14 P SPARE #UH-A2 UNIT HEATER 5,000 15 21 B 22 SPARE SPARE HW PUMP 1 1,120 15				PANEL:	HH1			VOLTAGE:	277/480]			
LOCATION: MAIN ELECTRICAL ROOM MAIN: 228 A MLO AIC: 25,000 A MOUNTING: SURFACE DESCRIPTION LTG. VA EQUIP. VA HVAC VA BREAKER HVAC VA EQUIP. LTG. VA EQUIP. VA HVAC VA BREAKER HVAC VA EQUIP. LTG. VA DESCRIPTION LTG. VA DESCRIPTION LTG. VA DESCRIPTION LTG. VA DESCRIPTION A 2 25 5010 HVAC VA EQUIP. VA HAT VA EQUIP. LTG. VA EQUIP. LTG. VA PARETAIL #FT-L-B TEXHAUST FAN 3,980 15 1 A 14 15 1,180 #FTU-AS FAN TERMINAL UNIT #UH-A1 UNIT HEATER 5,000 15 15 8 16 20 3,000 #CH-CUNIT HEATER #UH-A2 UNIT HEATER 5,000 15 15 8 2 3,000 #CH-CUNIT HEATER SPARE #UH-A2				FOR:	COMMON HVAC AND PUMPS			PHASE:	3 PH-4W	1			
AIC: 25,000 A MOUNTING: SURFACE DESCRIPTION LTG. VA EQUIP. VA HVAC VA BREAKER AMPS BUS BREAKER HVAC VA EQUIP. VA ITG. VA EQUIP. VA HVAC VA BREAKER AMPS BUS BREAKER HVAC VA EQUIP. VA HVAC VA DESCRIPTION #EF-1 EXHAUST FAN EQUIP. VA HVAC VA BREAKER AMPS BREAKER HVAC VA EQUIP. VA HVAC VA EQUIP. VA HTU-STATTERNIAL #FTU-B TERMINAL UNIT 10,180 20 9 8 10 15 1,180 #FTU-ATATTERNINAL #UH-A1 UNIT HEATER 0 0 1 <td></td> <td></td> <td></td> <td>LOCATION:</td> <td colspan="2">MAIN ELECTRICAL ROOM</td> <td>MAIN:</td> <td>225 A MLO</td> <td>1</td> <td></td> <td></td>				LOCATION:	MAIN ELECTRICAL ROOM		MAIN:	225 A MLO	1				
DESCRIPTION LTG. VA EQUIP. VA HVAC VA BREAKER AMPS BUE BREAKER PAC VA EQUIP. VA LTG. VA EQUIP. VA VAC VA BREAKER AMPS #EF-1 EXHAUST FAN 3,980 15 3 8 4 15 1,180 #FTU-AT FAN TERMINAL UNIT HEATER #FTU-B TERMINAL UNIT 10,180 29 8 10 15 1,180 #FTU-AT FAN TERMINAL UNIT HEATER #UH-A1 UNIT HEATER 10,180 20 9 8 10 15 1,120 CHW PUMP 1 #UH-A1 UNIT HEATER 5,000 15 16 20 3,000 #FUL-AS FAN TERMINAL UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 16 20 3,000 #GUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 12 8 20 3,000 #GUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 18 8 20 3,000 #GUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 21 8 <t< td=""><td></td><td></td><td></td><td>AIC:</td><td>25,0</td><td>A 00</td><td></td><td></td><td>MOUNTING:</td><td>SURFACE</td><td>1</td><td></td><td></td></t<>				AIC:	25,0	A 00			MOUNTING:	SURFACE	1		
DESCRIPTION LTG. VA EQUIP. VA HVAC VA BREAKER AMPS BUS BREAKER HVAC VA EQUIP. LTG. VA DESCRIPTION #EF-1 EXHAUST FAN 3,980 15 3 8 4 15 1,180 #fTU-4: FAN TERMINAL #FTU-B TERMINAL UNIT 10,180 20 9 8 10 15 1,180 #fTU-4: FAN TERMINAL #FTU-B TERMINAL UNIT 10,180 20 9 8 10 15 1,180 #fTU-4: FAN TERMINAL #UH-A1 UNIT HEATER 10,180 20 9 8 10 15 1,120 CHW PUMP 1 #UH-A2 UNIT HEATER 5,000 15 15 8 16 20 3,000 #fUH-CUNIT HEATER #UH-A2 UNIT HEATER 5,000 15 1 8 20 3,000 #fUH-CUNIT HEATER #UH-A2 UNIT HEATER 5,000 15 27 8 20 3,000 #fUH-CUNIT HEATER #UH-A2 UNIT HEATER 5,000 15 27 8											1		
#EF-1 EXHAUST FAN 3,980 15 1 A 2 25 5.010 #CUH-C UNIT HEATER #FTU-B TERMINAL UNIT 10,180 20 6 15 1,180 #FTU-A3 FAN TERMINAL INTO #FTU-A3 FAN TERMINAL UNIT #FTU-B TERMINAL UNIT 10,180 20 9 B 10 15 1,180 #FTU-A3 FAN TERMINAL INTO #UH-A1 UNIT HEATER 5,000 11 C 12 20 3,000 #CUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 15 B 16 20 3,000 #CUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 15 B 16 20 3,000 #CUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 18 B 20 3,000 #CUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 21 B 22 SPARE SPARE HW PUMP 1 1,120 15 27 B 28 SPARE SPARE	DESCRIPTION	LTG. VA	EQUIP. VA	HVAC VA	BREAKER AMPS		BUS		BREAKER	HVAC VA	EQUIP.	LTG. VA	DESCRIPTION
#EF-1 EXHAUST FAN 3,980 15 3 8 4 15 1,180 #FTU-AT FAN TERMINAL WELL FIELD PUMP 2 #FTU-B TERMINAL UNIT 10,180 20 9 8 15 1,180 #FTU-AZ FAN TERMINAL WELL FIELD PUMP 2 #UH-A1 UNIT HEATER 5,000 15 11 C 12 20 3,000 #CUH-C UNIT HEATER #UH-A1 UNIT HEATER 5,000 15 15 B 16 20 3,000 #CUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 15 B 20 3,000 #CUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 21 B 20 3,000 #CUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 21 B 20 3,000 #CUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 21 B 20 3,000 #CUH-C UNIT HEATER WUM 2 1,120 15 25 A 26 SPARE WELL FIELD						1	Α	2	25	5,010			#CUH-C UNIT HEATER
#FTU-B TERMINAL UNIT #FTU-A2 FAN TERMINAL #FTU-A3 FAN TERMINAL UNIT #FTU-A3 FAN TERMINAL UNIT #FTU-B TERMINAL UNIT 10,160 20 9 8 15 1,180 #FTU-A3 FAN TERMINAL UNIT #UH-A1 UNIT HEATER 5,000 15 12 20 3,000 #CUH-C UNIT HEATER #UH-A1 UNIT HEATER 5,000 15 15 8 16 20 3,000 #CUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 15 8 16 20 3,000 #CUH-C UNIT HEATER #W PUMP 1 1,120 15 27 18 20 SPARE HW PUMP 2 1,120 15 27 8 28 SPARE WELL FIELD PUMP 1 1,800 40 35 C 36 SPARE WELL FIELD PUMP 2 18,600 40 35 C 36 SPARE WELL FIELD PUMP 2 18,600 40 35 C 36 <t< td=""><td>#EF-1 EXHAUST FAN</td><td></td><td></td><td>3,980</td><td>15</td><td>3</td><td>В</td><td>4</td><td>15</td><td>1,180</td><td></td><td></td><td>#FTU-A1 FAN TERMINAL</td></t<>	#EF-1 EXHAUST FAN			3,980	15	3	В	4	15	1,180			#FTU-A1 FAN TERMINAL
#FTU-B TERMINAL UNIT						5	С	6	15	1,180			#FTU-A2 FAN TERMINAL
#FTU-B TERMINAL UNIT 10,180 20 9 B 10 15 1,120 CHW PUMP 1 #UH-A1 UNIT HEATER 5,000 15 13 A 14 SPARE \$						7	Α	8	15	1,180			#FTU-A3 FAN TERMINAL
UNIT Image: constraint of the constraint of	#FTU-B TERMINAL			10,180	20	9	В	10	15	1,120			CHW PUMP 1
#UH-A1 UNIT HEATER 5,000 15 13 A 14	UNIT					11	С	12	20	3,000			#CUH-C UNIT HEATER
#UH-A1 UNIT HEATER 5,000 15 15 B 16 20 3,000 #CUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 16 20 3,000 #CUH-C UNIT HEATER #UH-A2 UNIT HEATER 5,000 15 17 C 18 20 3000 #CUH-C UNIT HEATER #WH-A2 UNIT HEATER 5,000 15 15 21 B 22 SPARE HW PUMP 1 1,120 15 25 A 26 SPARE HW PUMP 2 1,120 15 27 B 28 SPARE CHW PUMP 2 1,120 15 29 C 30 SPARE WELL FIELD PUMP 1 18,600 40 33 B 34 SPARE WELL FIELD PUMP 2 18,600 40 33 B 34 SPARE WELL FIELD PUMP 2 18,600 40 39 B 40 60 10,880 18,860 PANEL*HPI* Totals						13	Α	14					SPARE
Image: book of the second se	#UH-A1 UNIT HEATER			5,000	15	15	В	16	20	3,000			#CUH-C UNIT HEATER
						17	С	18	20	3,000			#CUH-C UNIT HEATER
						19	Α	20					SPARE
Image: Constraint of the second sec	#UH-A2 UNIT HEATER			5,000	15	21	В	22					SPARE
HW PUMP 1 1,120 15 25 A 26 Image: Constraint of the synthesis of the synthesynthesis of the synthesis of t						23	С	24					SPARE
HW PUMP 2 1,120 15 27 B 28 Image: Constraint of the synthesis of the synthesynthesis of the synthesis of the synthesis of t	HW PUMP 1			1,120	15	25	Α	26					SPARE
CHW PUMP 2 1,120 15 29 C 30 Image: Constraint of the constraint of	HW PUMP 2			1,120	15	27	В	28					SPARE
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CHW PUMP 2			1,120	15	29	С	30					SPARE
WELL FIELD PUMP 1 18,600 40 33 B 34 Image: Constraint of the synthesis of the synthesynthesis of the synthesis of the synthesis of the s						31	Α	32					SPARE
Image: second	WELL FIELD PUMP 1			18,600	40	33	В	34					SPARE
WELL FIELD PUMP 2 Image: Constraint of the state of the						35	С	36					SPARE
WELL FIELD PUMP 2 Image: Non-Section of Control						37	Α	38					
Image: Non-Section of the section of the se	WELL FIELD PUMP 2			18,600	40	39	В	40	60	10,880	18,860		PANEL "HP1"
Totals 0 0 64,720 29,550 18,860 0 Totals Image: Constraint of the stress of						41	С	42	1				TRANSFORMER
Totals 0 0 64,720 Image: Normal and the stress of													
LOAD DESCRIPTION CONN. DEMAND VA. PHASE VA LIGHTING 0 0 A 37,677 GENERAL POWER 18,860 9,430 B 36,787 HVAC EQUIPMENT 94,270 94,270 C 38,667	Totals	0	0	64,720						29,550	18,860	0	Totals
LOAD DESCRIPTION CONN. DEMAND VA. LIGHTING 0 0 GENERAL POWER 18,860 9,430 HVAC EQUIPMENT 94,270 94,270 Image: State of the													
LOAD DESCRIPTION CONN. DEMAND VA. PHASE VA LIGHTING 0 0 A 37,677 GENERAL POWER 18,860 9,430 B 36,787 HVAC EQUIPMENT 94,270 94,270 C 38,667													
LIGHTING 0 0 A 37,677 GENERAL POWER 18,860 9,430 B 36,787 HVAC EQUIPMENT 94,270 94,270 C 38,667 LIGHTING Image: Comparison of the second sec	LOAD DESCRIPTION	CONN.	DEMAND VA.								PHASE VA		
GENERAL POWER 18,860 9,430 B 36,787 HVAC EQUIPMENT 94,270 94,270 C 38,667	LIGHTING	0	0								A	37,677	
HVAC EQUIPMENT 94,270 94,270 C 38,667	GENERAL POWER	18,860	9,430								В	36,787	
	HVAC EQUIPMENT	94,270	94,270								С	38,667	
TOTAL 113,130 103,700 TOTAL 113,130	TOTAL	113,130	103,700								TOTAL	113,130	
PERCENT LOADED 90.50% 82.96%	PERCENT LOADED	90.50%	82.96%										

conclusion

nicholas w. mattise | mechanical option

conclusion

GCHP | DOAS | ACB

costs \$680,000

24% EUI reduction

\$3,600 average monthly savings

15.5 year payback for HVAC system

electrical panel savings or future capacity

LEED gold

thesis proposal

mechanical depth

electrical breadth

conclusion

nicholas w. mattise | mechanical option

acknowledgements

Liberty Property Trust

Turner Construction

In Posse

Dr. Laura Miller

Penn State University

friends | family | co-workers

thesis proposal

mechanical depth

electrical breadth

conclusion

nicholas w. mattise | mechanical option

questions

recommendations

nicholas w. mattise | mechanical option

thesis final presentation | april 15, 2014